Monday, June 11, 2018

Experiment 1 Introduction To Uncertainty Analysis

Experiment 1 Introduction To Uncertainty Analysis

Topic       : Physical Quantities and Units
Title         : Introduction to Error Analysis
Objective : To estimate the accuracy of  experimental result

Theory    :
Error or uncertainties could be caused by limitation of the measuring instruments, nature of
the measured quantities or other external factors. Error can be classified as systematic error
and random error.
Error analysis is a technique used to determine how error propagates through experimental
procedure. This technique is based on combining the uncertainty for each quantity involved
to estimate the accuracy of  the experimental result.
Propagation of errors: Assume A and B are two measured quantities in an experiment.
  1. Addition or Subtraction
If the derived quantity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>A</mi><mo>+</mo><mi>B</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>A</mi><mo>-</mo><mi>B</mi></math>, then
                                                 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>C</mi><mo>=</mo><mfenced open="|" close="|"><mi>A</mi></mfenced><mo>+</mo><mfenced open="|" close="|"><mi>B</mi></mfenced></math>

  1. Multiplication and Division
If the derived quantity <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>A</mi><mo>&#xD7;</mo><mi>B</mi></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mi>A</mi><mo>&#xF7;</mo><mi>B</mi></math>, then
                                           <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>&#x2206;</mo><mi>C</mi></mrow><mi>C</mi></mfrac><mo>=</mo><mfrac><mrow><mo>&#x2206;</mo><mi>A</mi></mrow><mi>A</mi></mfrac><mo>+</mo><mfrac><mrow><mo>&#x2206;</mo><mi>B</mi></mrow><mi>B</mi></mfrac></math> 
                                              <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>C</mi><mo>=</mo><mfenced><mrow><mfrac><mrow><mo>&#x2206;</mo><mi>A</mi></mrow><mi>A</mi></mfrac><mo>+</mo><mfrac><mrow><mo>&#x2206;</mo><mi>B</mi></mrow><mi>B</mi></mfrac></mrow></mfenced><mi>C</mi></math> 
The experimental result should be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>&#xB1;</mo><mo>&#x2206;</mo><mi>C</mi></math>

The accuracy of the experimental result can be estimated by calculating the percentage error.
                                                                     Percentage error <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mo>&#x2206;</mo><mi>C</mi></mrow><mi>C</mi></mfrac><mo>&#xD7;</mo><mn>100</mn><mo>%</mo></math>

Apparatus:
(i) A measuring cylinder
WP_20180624_14_14_49_Pro[1]
                 (ii) A glass rod
WP_20180624_14_15_35_Pro[1]
                 (iii) A triple beam balance
WP_20180624_14_14_04_Pro[1]
                 (iv) A micrometre screw gauge
WP_20180624_14_12_48_Pro[1]
                 (v) A half-metre ruler
WP_20180624_14_32_57_Pro[1]

Procedure:

Part I: To estimate the error in the determination of density of water.

  1. Weigh an empty measuring cylinder.
  2. Measure 200 cm3 of water using the measuring cylinder.
  3. Weigh the filled measuring cylinder.
  4. Calculate the density of water.
  5. Estimate the error in your result.

Part II: To estimate the error in the determination of density of glass.

  1. Measure the diameter and length of a glass rod.
  2. Weigh the glass rod.
  3. Calculate the density of the glass rod.
  4. Estimate the error in your result.

Data :







No comments: